Wiedersehen mit Thermodynamik
Thermodynamics Revisited
„Unzuverläßigkeit. Das ists! ... bei einem gemeinen Soldaten hätte es Liederlichkeit geheißen.“ Arno Schmidt, Wundertüte, Brief an Major Vega.
Ich teile die Exzerpte mit, die sich ansammelten im Versuch die drei thermodynamischen Kapitel des Buches Physik unter Verwendung des Virialsatzes von H. Wulff zu verstehen.
In Meyers Handbuch über das Weltall von Schaifers, Traving findet sich diese Tabelle zur Umrechnung von Energien:
= | = | = | ||||
= | = | = | ||||
= | = | = | ||||
= | = | = |
Diese Tabelle ist energetisch, elektrisch, atomar (mechanisch oder quantenmechanisch), und thermisch. Es wird sich, s. u., durch die gesamte Physik bewegt.
Traving berechnete Sternspektren, woraus wir schließen, dass diese Tabelle berechtigt ist. Ein Spektrum entsteht aus der Auffächerung des Lichts, dabei entsteht anders als beim Sonnenlicht kein Regenbogen, ein kontinuierliches Spektrum, sondern es stellen sich nur ganz vereinzelte „Farben“ des Sternlichts dar, der Rest bleibt schwarz. Aus diesen Farben, oder ihrer Wellenlänge, schließt man auf die chemischen Elemente aus denen der Stern besteht, denn jedes Element sendet ganz bestimmte „Farben“ (Frequenzen) aus. Da wir andererseits in Kapitel acht erfahren, dass die Temperatur nicht wie üblich über die spezielle Variable w eingeführt werden kann, und ein anderer Weg aufgezeigt wird, dürfte es interessant sein, sie in einer solchen Tabelle mit neu aufeinander bezogenen Werten zu berechnen und zu vergleichen.
oder mit Quantenzahlen m und n
zur Frequenz ny des Lichts, das sind elektromagnetische Wellen, und „h quer“, dem Planckschen Wirkungsquantum
und
unter Annahme von c gleich konstanter Lichtgeschwindigkeit. Lambda Wellenlänge der Lichtwelle, ny ihre Frequenz. Wellenlänge oder Frequenz geben sozusagen eine „Farbe“ des Lichts an.
(Optische Wellen sind sehr klein deshalb die Einheit Å (Aangström), Radiowellen gross)
Der Ionisierungsenergie eines Elementes entspricht eine Frequenz und mittels λ eine Wellenlänge. Für kürzere Wellen des Lichts absorbiert dieses bestimmte Element Licht.
Beispielsweise ist der interstellare Raum mit sehr verdünntem Wasserstoffgas für kurzwelligere Strahlung der Sterne als 911,8 Å (Aa) praktisch undurchlässig.
Bei Atomen sind die Energieniveaus noch relativ weit getrennt, bei Molekülen finden sich gleichmäßige Folgen dicht liegender Energiezustände. Diese sind auf Schwingungen und Rotationen im Molekülverband zurückzuführen. Es finden sich Sequenzen benachbarter Spektrallinien mit kleinen und konstanten Frequenzdifferenzen zwischen benachbarten Linien.
Weitere Betrachtungen zur Absorption in der Erdatmosphäre führen zur Erkenntnis, dass wir praktisch nur zwei Fenster für bestimmte Wellenbereiche zur Beobachtung des Weltalls haben, die recht genau, dem Spektrum des Auges entsprechen.
Weiter gibt es interstellaren Staub, der das Zentrum unserer Galaxie wegen Absorption (auf große Entfernung) unbeobachtbar macht.
Traving erläutert die Emission:
Die Emission ist der der Absorption entgegengesetzter Prozess, bei welcher Materie Energie an das Strahlungsfeld (der Photonen oder Lichtteilchen, ein Bild von Einstein) abgibt, also Photonen erzeugt werden.
Zwischen Absorption und Emission besteht ein fundamentaler Zusammenhang, der unabhängig von der Art der Materie ist.
Nur in Frequenzen in denen Materie absorbieren kann, kann sie auch emittieren.
Das Verhältnis der Emissions- zu den Absorptionsprozessen ist nur abhängig von der Energie im Strahlungsfeld und der Temperatur der Materie.
Wichtig ist dabei das Verhältnis von kT der durch Multiplikation mit der Boltzmannkonstanten auf Energieeinheiten umgerechneten absoluten Temperatur zur Energie der Lichtquanten hν.
Es gibt zu jeder Temperatur ein Strahlungsfeld bei dem sich in allen Frequenzen ein Gleichgewicht zwischen Emission und Absorption einstellt.
Es ist dies das berühmte durch die Kirchhoff-Planckfunktion
dargestellte Hohlraumstrahlungsfeld. (Der Steradiant, auch Sterad (hier eigenwillig „ster“), ist eine dimensionslose Maßeinheit für den Raumwinkel. Aha, steht im Buch auf Seite 62 in Prosa)
Traving erklärt die Formel:
Die Bezeichnung deutet darauf hin, dass sich dieses Strahlungsfeld in einem Hohlraum, dessen Wandung die Temperatur T hat, einstellt. Durch eine kleine Öffnung, die das Strahlungsfeld kaum beeinflusst, kann die Hohlraumstrahlung austreten und untersucht werden.
das sogenannte Wiensche Verschiebungsgesetz
Das Produkt aus Wellenlänge des Maximums und Temperatur ist also konstant.
Die bekannte Tatsache, dass mit wachsender Temperatur die Farbe eines glühenden Körpers von Rot über Gelb zu hellem Weiß wechselt, beruht auf dieser Verschiebung.
In Übereinstimmung mit der Theorie findet man für die Gesamtausstrahlung
Stefan-Boltzmannsches Strahlungsgesetz. Die Energieabstrahlung wächst also sehr rasch mit der Temperatur, bei Verdoppelung von T auf das 16fache.
Womit wir bei Joos ins Kapitel Strahlungstheorie einsteigen können, als Amateur oder Spiegeljournalist. Denn weiter ginge es mit Relativistik und Synchrotonstrahlung, die ich hier nicht wiedergebe.
(Der dritte Aspekt der Strahlung ist die Streuung, also Ablenkung von Lichtstrahlen durch eine Wechselwirkung, die eine Richtungsänderung der Strahlung zur Folge hat, den wir getrost Goethe, Lichtenberg und Newton überlassen.)
Damit verstehen wir das Kapitel Vorläufiges zur Thermodynamik aus dem Buch Physik unter Verwendung des Virialsatzes besser.
Im Buch wird zuerst allerorts die Verbindung zur Nomenklatur hergestellt und es bringt die Formeln in üblicher Darstellung mit Erläuterung.
„Wem dies alles [im Kapitel Besprochene] zu kraus erscheint,“ der könne mit Becker sagen, all diese gelehrten Erweiterungen braucht es nicht, es genügt der Carnotsche Wirkungsgrad und sich einen passenden Kreisprozess zu ersinnen.
Der erste Hauptsatz der Thermodynamik schon ergibt eine Zunahme der inneren Energie im Gegensatz zu einem Coulombsystem.
Der Druck wird kinematisch untersucht, und dabei festgestellt, dass beim Übergang von der Inneren zur Freien Energie die Entropie S als Variable durch die Temperatur abgelöst wird.
(n)
Es wird gezeigt wie das Massenwirkungsgesetz, in der Form, daß sich die Teilchen im Zustand des idealen Gases befinden, folgt. Und hier findet die erwähnte „weitläufige“ Herleitung der Entropiekonstanten statt.
An diesem Punkt hatte der Autor seine neue gemeinsame Abzählung freier und gebundener Zustände gefunden.
Er schließt in der Darstellung wieder an die in der Literatur übliche an.
Die Abzählung beschreibt thermische Relationen denen die kalorischen gegenüberstehen, die zusätzlich zu T, V und P die Größen S und U enthalten.
Die Sahagleichung wird referiert und seine Problemgeschichte divergierender Zustandssummen und der Notwendigkeit Ionisierungsenergien zu erniedrigen: Die sogenannte „Druckionisation“.
zwanglos herauskürzen lässt, ... die Erniedrigung der Ionisationsenergie E[I] ist also ein Scheinproblem und ein drastisches Beispiel einer Fehlleistung aufgrund einer willkürlichen Festlegung des Energienullpunktes ... .“
Substanziell neu an der Verteilung ist, dass sie sich bei „Entartung“ auf den gebundenen Teil reduziert. Konventionell werden Teilchen dabei als frei angesehen.
Er beschreibt weiter die Anbindung beider Teile, also löst die Erfordernis die Grenzzustände zu bestimmen.
Der Begriff Materieentartung bedarf des äußeren Drucks, was in Kapitel sieben behandelt wird. (Das wird dort experimentell mit der Kompression von Metallen belegt. Eine angefügte Tabelle, die errechnete und verschiedene experimentelle Werte vergleicht, weist kaum einen Fehlergang auf. Eine solche Untersuchung der Kompression der Metalle wurde noch nie angestellt.)
Er gibt die ganze Verteilungsfunktion an und eine Integralschreibweise bezüglich P und V und mit Impulsgrenzen an, bei denen üblicherweise die obere Grenze mit unendlich angegeben wird. Und formuliert die innere Energie. Es ergeben sich Nullpunktsenergien.
Der Autor lenkt den Blick auf die Untersuchung „wie die ursprünglich nicht statistisch definierten kalorischen Größen S und U zum Druck P passen.“
Der Hinweis auf das nicht aufgelöste S = k ln w folgt und daran schießen sich diverse partielle Ableitungen wie in der Thermodynamik üblich, bei adiabatischen Änderungen dT/dV eines Systems, P wird untersucht und das Gesetz von Gay-Lussac abgeleitet.
Zu T und V wird die Normierungskonstante hinzugezogen, und festgestellt, dass Änderungen allein zwischen T und V geschehen und w = 1 bleibt.
Mit der Hinzunahme von offenen Systemen, (Wärmebad) kann aber nicht mehr allgemein w = 1 vorausgesetzt werden. U und S sind Zustandsfunktionen von T und V.
Man kommt zu Gleichungen der freien Energie, die wieder statistisch angegeben werden müssen (da w nicht mehr 1 ist, sondern eingesetzt wird)
Die Differentiation wird für w nahe eins durchgeführt, und das Verhältnis freier zu gebundenen Teilchen bleibt unbestimmt. Das Massenwirkungsgesetz ist nicht herzuleiten. Mit w = 1 ist wie bei Nernst und Planck beim absoluten Nullpunkt aber jeder Gleichgewichtszustand
S = N k ln w = 0.
w = 1 geht wieder in die statistischen Gleichungen ein.
Unproblematisch sind dabei Funktionen von T und V als Bestimmungsgrößen für den Druck.
B ist aber, B = B (T, V, N), von N (Teichenzahl) abhängig.
Wie Gleichungen, bei denen V und T vorgebbar sind, erfüllt werden führt auf eine partielle Differentialgleichung erster Ordnung für B (T,V,N), für die es eine allgemeine Integrationstheorie gibt. Ein solches System ist nicht vollständig, ein „Jakobischer Klammerausdruck“ tritt hinzu und wird ausgewertet.
Am Ergebnis wird der statistische Ansatz bestätigt. Und erläutert.
Es geht atomar (mechanisch und quantenmechanisch), elektrisch, thermisch und chemisch veranschaulicht weiter. S 54
Nach einigem Weiteren wird die Existenz stationärer thermodynamischer Systeme angekündigt, für die der Virialsatz gilt, und dieser in den Gleichungen verankert. Eine Verkleinerung des Systems benötigt einen äußeren Druck! [1]
Analoges gibt es aber nicht für Systeme mit Nullpunktsenergien, die ihr Volumen nicht mehr verkleinern können.
Die folgenden Kapitel sieben und acht leiten in extenso ab und sind selbsterklärend, da der Autor schrittweise vorgeht. Sie behandeln die Druckfunktion der Elektronen und die Kompressibilität der Metalle.
Die Argumentation mit den Drücken in Kapitel acht kenne ich aus einem anderen Manuskript, und muss nachsehen, sie unterschied sich nicht im Gedankengang. Dort wird das äußere Virial angebracht, die Stationarität thermodynamischer Systeme mathematisch festgemacht. Dieses Kapitel ist in sich geschlossen und deduktiv, und birgt am wenigsten Schwierigkeiten. Ich möchte dem Leser nicht alle Vorfreude nehmen. Klar bringt das Kapitel die Notwendigkeit, in thermodynamischen Systemen den Virialsatz zu beachten, und wie dieser dort eingeführt wird.
Ein Vergleich mit experimentellen Werten von Kompressionsmodulen wird tabellarisch angegeben.
Die Aussicht auf die axiomatische Grundlegung der Thermodynamik wird gegeben. Warum die Aussicht, warum induziert die Druckfunktion die Entropiefunktion? Angegeben wird das Differential, die räumliche Ableitung, der Entropie aufgrund der Druckfunktion. Da W anders ist, stellt sich die Lösung auch anders dar. Was dazu nötig ist wird angegeben, aber nicht für einen speziellen Fall ausgeführt. „Ein Integral lösen ist wie einen Haufen Sand vor dem Haus wegschaufeln.“ sagte mir der Autor. Es war nicht zu erwarten, dass es einfach ist, ebenso wenig einfach wie die Ableitung der Entropie. Ausserdem wird Plancks Gesetz auch als Integral angegeben. [2]
Die Druckfunktion der Elektronen, wie die Elektronen einen Beitrag zum Druck leisten, wie Druck von außen aufgewendet werden muss um das Volumen zu verkleinern, wie das mit dem äußeren Virial (zum Beispiel einer Wand) zusammenhängt, nämliche bei positiver Energie U.
Zum Schluss stellen wir mit dem Autor fest, was wir für die ganze Grundlegung brauchen, die Boltzmannkonstante, die Maxwellverteilung und das Massenwirkungsgesetz in einer speziellen Version nach Guldberg und Waage (ich vermute, dass statt der Konzentration, dort ein Potential verortet ist).
Die Entropie wird abgeleitet. S ist weder die „große Zahl der Realisierungsmöglichkeiten“ noch eine „Wahrscheinlichkeit“. Das bedeutet, dass darüber nicht die Temperatur eingeführt werden kann, wie dies bis jetzt geschieht. Andere Möglichkeiten zur Einführung der Temperatur gibt der Autor an.
(S kommt in zwei Formen vor mit N und ohne, und es gibt es vor und nach Normierung, weswegen w mal groß mal klein geschrieben wird.)
Gerthsen leitet die Maxwellverteilung ab, und erklärt warum die Geschwindigkeitsverteilung von Gasen als zufällig, statistisch, vorausgesetzt werden muss. Am Beispiel der Luft in der Atmosphäre. Hätten die Teilchen eine bestimmte Geschwindigkeit, wäre die Grenze erstens scharf, was sie nicht ist, andererseits würde die Dichte mit der Höhe steigen und oben am größten sein. Was der Wirklichkeit widerspricht. Gerthsen benutzt ein schönes Bild: Die Luftteilchen seien eben gerade keine nach oben geschossenen Gewehrkugeln.
Für die exponentielle Darstellung und für die Fakultät braucht man die Stirlingsche Formel
für sehr große N. (Die Exponentialfunktion [3] wird in der Stirling formula, für näherungsweise N!, in Anhang I Appendix gebraucht.)
Schließlich betont der Autor, wie er w gebraucht.
Das ist keine statistische Wahrscheinlichkeit, oder große Zahl der Realisierungsmöglichkeiten für N. Und somit kann die Temperatur darüber nicht eingeführt werden, warum das gar nicht nötig ist und wie es anders möglich ist, wird gesagt.
Der Faktor B kommt in drei Zusammenhängen vor: primär ist er der Normierungsfaktor (für w bezüglich N), mal abhängig von T und V, wenn w = 1, und falls w ≠ 1, abhängig von T, V, und N.
In der Form a = ln B ist er Lagranger Faktor zur Ermittlung eines Maximums.
Den Faktor b benötigen wir ggf. zur Einführung der Temperatur.
Die Bose Einstein Statistik führt die Ununterscheidbarkeit der Teilchen ein mit Spin = 1 ein, die Fermi-Dirac Statistik bezieht den Spin, jeweils 1/2 mit ein. (Was das soll, weiß ich nicht, ich denke, man taucht damit immer tiefer in die Quantenmechanik ein. s. Anhänge)
Die Anerkennung des Massenwirkungsgesetzes dauerte 20 Jahre. Es lag alles 1905 vor und es tat sich 110 Jahre nichts.
Mit Gerthsen haben wir gelernt, dass Ununterscheidbarkeit in einem gewissen Sinne für Geschwindigkeitsverteilungen vorliegt, einem Gasteilchen wird keine charakteristische Geschwindigkeit u zugeordnet, wie in der Mechanik.
(Ein Bild: Ein Auto hat die Geschwindigkeit, die sich beim Würfeln ergibt 1 ist 20km/h, 2 40, usw. bis 6 120, zu gewissen Zeiten wird gewürfelt und das Auto/Bus kann zufällig mit konstanter Geschwindigkeit 60 sein Ziel erreichen, sagen wir bei vier Würfen mit 3, oder mit den Würfen 2, 3, 6, 5 mit verschiedenen Geschwindigkeiten. Die Fahrtdauer wird zwischen verschiedenen Extrema liegen und ein Durchschnittsmaximum aufweisen (bei 3,5, also 70 km/h?). Es gibt einen wahrscheinlichen Fahrplan. (Wie neoliberal.) Oder mein Bus hat sechs Stationen und fährt nach Augen so viele Haltestellen und kehrt am Ende um. Es ist egal in welche Richtung man fährt, das Ziel erreicht man mit unterschiedliche vielen Würfen. Jede Haltestelle wird angefahren.)
Ein Bild für Boris Vians Bus in Herbst in Peking.
Gerthsen Physik, Volk und Wissen 1949 (sic!), bis zu welcher Auflage sich das Kapitel Grundlagen der kinetischen Gastheorie hält weiß ich nicht. (antiquarisch unter 10,-)
Weitere gelungene Erläuterungen in Handbuch über das Weltall.
Photonen mit Energie und Bewegungsgröße, eine Idee von Einstein: Absorption, Photonen verringern, Emission, Photonen vermehren sich, bei Beugung oder Stoß übertragen sie Impuls und üben einen Strahlungsdruck aus. Weiter mit Bohrs Atommodell. Wegen Fraunhoferscher Linien und Absorption und Emission in nur bestimmten Bereichen.
In einem späteren Artikel Spektralanalyse nach Kirchhoff und Bunsen, der Beginn der Astrophysik. (antiquarisch unter 10,-)
Hilfreich Herder Lexikon Physik. Antiquarisch.
A. Eucken [4]: Grundriss der physikalischen Chemie (muss ich nachbestellen) 1942.
Der Autor dankt in Vertretung durch den Rezensenten Josiah Willard Gibbs, dem Gründer der physikalischen Chemie, der Nomenklatur, z.B. Phasenraum, des deduktiven Ansatzes und der Entwicklung der Vektoranalysis. Und J. C. Maxwell für dessen Wertschätzung.
Im Buch kommen seine Formeln ohne Nennung vor.
[1] Der Autor macht ein Bild: Sperrt man ein Planetensystem (stationär) in einen Kasten und verkleinert diesen, treffen die Planetenbahnen bei genügender Verkleinerung auf die Wände des Kastens und üben einen Druck aus, der thermisch ist. Im Gegensatz zur Quantenmechanik gibt es bei mechanischen Systemen keinen kleinsten Zustand über den hinaus nicht verkleinert werden kann.
[2] „Der entscheidende Schritt ist tatsächlich die Quantelung der Energie. Mit der Kombinatorik (? s.o.) kann man mit Hilfe der Formel
S = k ln W
die Entropie bestimmen, so ähnlich wie man die Mischungsentropie bei Lösungen bestimmt, mit denen sich Planck vorher beschäftigt hatte, ehe er das Problem der Hohlraumstrahlung studiert hat.“ Professor Dr. Klaus-Dieter Schotte, Plancks Strahlung Schwarzer Körper. (naja)
http://users.physik.fu-berlin.de/~schotte/QUANT/schwarz.pdf
[3] In der Differentialrechnung und Integralrechnung findet man den Vergleich arithmetischer und geometrischer Reihen beim Beauneschen Problem, die Lösung ist die Exponentialfunktion.
Und den simplen Zusammenhang zwischen
Multiplikation:
und Division:
Setzt man bei der Multiplikation statt uv vv ein, hat man das totale Differential
dvv = 2 vdv, mit dem man das Wegintegral der Kraft löst. Das negative Ergebnis ist das Potential!
[4] Ein Nazi.